Scientists have developed tiny robots than can drill into deadly cancer cells, blasting them open.
Cancer survival rates could be greatly improved if scientists are successful in developing microscopic medical weapons that obliterate cancerous cells.
Nanomachines may be tiny โ 50,000 of them would fit across the diameter of a human hair โ but they have the potential to pack a mighty punch in the fight against cancer.
Researchers at Durham University in the UK have used nanobots to drill into cancer cells, killing them in just 60 seconds.
They are now experimenting on micro-organisms and small fish, before moving on to rodents. Clinical trials in humans are expected to follow and it is hoped that the results may have the potential to save millions of lives.
The mechanics of nanobots
These minute molecules have components that enable them to identify and attach themselves to a cancer cell.
When activated by light, the nanobotsโ rota-like chain of atoms begin to spin at an incredible rate โ around two to three million times per second. This causes the nanobot to drill into the cancer cell, blasting it open.
The study is still in its early stages, but researchers are optimistic it has the potential to lead to new types of cancer treatment.
Dr Robert Pal, of Durham University, said: โOnce developed, this approach could provide a potential step change in noninvasive cancer treatment and greatly improve survival rates and patient welfare globally.โ
Nanobots in our veins
The destructive properties of the nanobots make them perfect for killing cancer cells. But the technology can also be used to repair damaged or diseased tissues at a molecular level.
In the future, these nanomachines could essentially patrol the circulatory system of the human body. They could be used to detect specific chemicals or toxins and give early warnings of organ failure or tissue rejection.
Another potential function may involve taking biometric measurements to monitor a personโs general health.
Searching for oil
The medicinal advantages of nanobots are clear to see, but industry might also benefit from the technology.
Oil and gas is one example. The idea is that nanobots could be injected into geologic formations thousands of feet into the earth. Changes to the chemical make-up of the machines would point to the location of reservoirs.
Meanwhile, itโs also been suggested thatย nanotechnology could become a valuable tool in cleaning up oil spills.
There is a long way to go before this tiny technology enters the mainstream, but it has the potential to make a massive impact on the world.